Climate Change Impairs Nitrogen Cycling in European Beech Forests

نویسندگان

  • Michael Dannenmann
  • Carolin Bimüller
  • Silvia Gschwendtner
  • Martin Leberecht
  • Javier Tejedor
  • Silvija Bilela
  • Rainer Gasche
  • Marc Hanewinkel
  • Andri Baltensweiler
  • Ingrid Kögel-Knabner
  • Andrea Polle
  • Michael Schloter
  • Judy Simon
  • Heinz Rennenberg
چکیده

European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles' heel for beech under climate change stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thinning of Beech Forests Stocking on Shallow Calcareous Soil Maintains Soil C and N Stocks in the Long Run

Sustainable forest management should avoid disturbance and volatilization of the soil carbon (C) and nitrogen (N) stocks both under present and projected future climate. Earlier studies have shown that thinning of European beech forests induces a strong initial perturbation of the soil C and N cycles in shallow Rendzic Leptosol, which consists of lower soil N retention and strongly enhanced gas...

متن کامل

Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests

We compared two adjacent mature forest ecosystem types (spruce vs. beech) to unravel the fate of assimilated carbon (C) and the cycling of organic and inorganic nitrogen (N) without the risk of the confounding influences of climatic and site differences when comparing different sites. The stock of C in biomass was higher (258 t·ha−1) in the older (150 years) beech stand compared to the younger ...

متن کامل

Climate change impacts on growth and carbon balance of forests in Central Europe

We analysed climate change impacts on the growth and natural mortality of forest tree species and forest carbon (C) balance along an elevation gradient extending from the Pannonian lowland to the West Carpathian Mountains (Central Europe). Norway spruce Picea abies, European beech Fagus sylvatica, and oak Quercus sp. were investigated for 2 future time periods: 2021–2050 and 2071–2100. The peri...

متن کامل

N-emission from beech forests

Nitrogen oxides emission from two beech forests subjected to different nitrogen loads B. Kitzler, S. Zechmeister-Boltenstern, C. Holtermann, U. Skiba, and K. Butterbach-Bahl Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, Vienna, Austria Sellenyg. 2–4/52, Vienna, Austria Institute of Terrestrial Ecology, Bush Estate, Penicuik, Mid...

متن کامل

A climate-driven switch in plant nitrogen acquisition within tropical forest communities.

The response of tropical forests to climate change will depend on individual plant species' nutritional strategies, which have not been defined in the case of the nitrogen nutrition that is critical to sustaining plant growth and photosynthesis. We used isotope natural abundances to show that a group of tropical plant species with diverse growth strategies (trees and ferns, canopy, and subcanop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016